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Abstract. Polar decomposition of the generators of the SU(2), algebra is performed and 
its contraction limit to the deformed oscillator algebra is considered. Using the phase 
operator occurring in the decomposition and its conjugate, we write a realisation of the 
SU(2j+ 1) algebra into which we embed the deformed SU(2) realisation. Finally we discuss 
the classical limit of the polar decomposition and the case of the quantum SU(2) dynamics. 

Quantum groups have their origin in the quantum inverse problem method [ l ]  and 
the first such structure, i.e. SL(2),, has appeared in studies of the Yang-Baxter equation 
[2]. Subsequent developments have shown that a Hopf algebra description of quantum 
groups is the appropriate one [3,4]. Also their relation to non-commutative geometry 
and the theory of knots and links has attracted great interest. In physics, quantum 
groups are related to the solutions of integrable systems, to certain problems in statistical 
physics and to conformal field theories. Also an extension of the theory of quantum 
groups to supersymmetric quantum Lie groups has been achieved [ 5 , 6 ] .  

On the other hand the problem of polar decomposition of the a, a i  operators of 
the harmonic oscillator goes back to Dirac [7] who tried to define the Hermitian phase 
operator as the quantum analogue of the classical phase variable. Progress in this 
problem has been reviewed in [8]. Recent developments on the problem [9] have 
shown that the Hermitian phase operator of the harmonic oscillator and the polar 
decomposition of a, a', although not defined in the whole Fock space, can be defined 
in a finite subspace with dimension s and the physically interesting quantities such as 
expectation values and transition probabilities, are first evaluated in the s-dimensional 
subspace and then by taking the limit s-,co. 

In  this letter we consider the quantum algebra SU(2),, for which we perform a 
polar decomposition. Using the technique of group contraction we derive the q- 
commutator for the deformed a, a' and their contracted polar decompositions. Also 
we give the embedding of the matrices of the SU(2), generators in the algebra SU(2j + 1) 
the generators of which are given in terms of the phase operator of the polar decomposi- 
tion h, and its conjugate g. Finally, motivated by the quantum plane condition which 
is satisfied between g and h we make some remarks on the problem of the quantum 
group dyamics. 

Take the SU(2), generators [lo, 111 

J ,  = J[  j 7 m l [ j  * m + 1 1  ljm rt l ) ( jml  (1) 
In=-]  
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and 
j 

m -j 
J ~ =  C mljm)(jmI (2) 

where we use the symbol: [XI = ( q x  - q - x ) / ( q  - q-I) ,  where q = eh is the deformation 
parameter. From these generators we obtain the commutation relations 

[ J 3 ,  J*I = *J+ ( 3 )  

[ J + ,  J-I = [2J3I (4) 

c = [ 53 + 31' + J-J+ = [ J 3  - 3]2+ J + J - .  ( 5 )  

The polar decomposition for operators is the analogue of the complex number 
decomposition, z =  r eid, and is defined as O =  UH where U is a partial isometry 
(one-side-unitary) operator and H a Hermitian operator [ 121. For the present case of 
the SU(2), generators we will require, on physical grounds, the U operator to be 

and the Casimir operator 

unitary. First we check that 
j 

J+J- = [j+ m][j  - m + 111 jm)(jmI 
m = - j  

j 

J-J+ = 1 [ j  - m][ j+  m + l]ljm)(jml 
m = - j  

and then write the quantum polar decomposition [ 131 

J+ = a h - '  = h - ' m  

J- = h m  = a h .  

When we fix the order of the basis elements as { Ij, - j ) ,  lj, - j + l), 
the following matrix representation for h :  

h =  

0 1  
0 1  

0 1  

.. 

(8) 

(9) 
. , I j j ) } ,  we obtain 

which is a ( 2 j +  1)-dimensional unitary matrix which obeys the relation hh-' = h - ' h  = 1, 
where h--' = h+ and the exponent eidR, where +R is a reference phase, manifest the fact 
that the polar decomposition above is unique up to this phase choice. Hereafter we 
choose +R = 0. We now observe that the matrix h together with the matrix 

where 
tator: 

= e i 2 r / ( 2 J + l )  , i.e. the 2 j +  1 primary root of unity, have the following commu- 

u g h  - hg = 0 (12) 
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and can be considered as the components (8, h )  of a quantum plane [14] for the 
specific value of some deformation parameter q ,-, - = w = e i2n/ (2 j+' ) .  Several interesting 
things can now be noted. First, in the classical limit q + 1, h + 0 the LHS of (8) and 
(9) becomes the classical J ,  generators while in the RHS the same is true for the 
operators under the square root but the operators h, h-' remain the same since their 
matrix elements are not deformed. So the h, h-' operators are the same in the quantum 
and classical polar decomposition of the algebra. Second, the (g, h )  as matrix rep- 
resentations of elements of a quantum plane are related to the GL(2), since any matrix 
M = (::) of this group has by definition the property of preserving the deformed 'scalar' 
product in the quantum plane [14,15], namely, 

and 
u g h  - hg = wg'h'- h'g=O 

ab = w-'ba 

(13b)  
as long as a, b, c and d obey the relations: 

cd = wdc 

ac = w-'ca bc = cd (14a) 
bd = w-'db ad - da = (U- '  - w)bc 

while a, 6, c, d commute with g,  h and the quantum determinant, defined as 
det,,,,M = ad - w - ' b c  # 0 (146) 

commutes with all the elements. In the present case h has a direct physical meaning 
since in the polar decomposition in (8) and (9) it describes the exponential phase 
operator ei@, also g = e'"w"3+"'. As we have already pointed out (after (12)) in the 
classical limit of SU(2),, q +  1,  h as well as g remains the same?. Thus it appears that 
even after taking the classical limit of SU(2), in the polar decomposition there is 
something remaining which is intrinsically quantum, namely the unitary phase operators 
h, h - ' .  

We now elaborate on the contraction limit of the SU(2), to the quantum oscillator 
algebra [ 6 ] .  In the contraction limit j + o o  and q> 1 ,  q '+oo  while [j]= 
(q' - q- ' ) / (q  - q - ' )  + q'(q - q-I ) .  Defining the operators h ,  = J,/m and h3 = 
J3 +jl, we obtain the commutation relations 

[2h3-2jl] 
PJl [ A + ,  h - I =  

and 

The contracted matrix form of the h- generators, for example, reads 

om 
(17) = q - h 3 / 2 a ( q )  = q l / 2 a ( q ) q - h 3 / 2  

'r We recall that in ( 8 ) ,  (9) in the LHS we have quantum generators of SU(2),, for any q, while in the R H S  
we have h as a component in the quantum plane [ 141 which together with g, the second component, obeys 
the quantum plane condition (12) for the specific value of qo = w = ei2a'(2j+'). 
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where the deformed annihilation operator a ( q )  occurring in the contraction of h- is 
given by 

Then the contraction of the commutator in (15) yields, 
q q - h 3 / 2 a * a q - h 3 / *  - q - h 3 1 2 a a t q - h 3 1 2  = - q - 2 h a  

which can be written as [lo] 

aa'- qa'a = q - N  (19) 
where we have denoted the h, operator in the contraction limit, by the number operator 

Similarly, we derive from' (16) the commutators 

[ ~ , a + ] = a '  [ N , a ] = - a .  

For q < 1 we replace in the above contractions q by q - ' .  The quantum polar decomposi- 
tion when contracted will give 

a = m h  = h a  

a t =  h-'& = m h-I. 

This is the polar decomposition for the q-bosonic operators containing in the square 
root the product of the q-creation and q-annihilation operators which is not however 
the number operator. 

The relationship between the quantum SU(2), generators with h, occurring in the 
polar decomposition, and its conjugate g motivates the embedding of the matrix 
realisation of the SU(2), algebra into the SU(2j+ 1) algebra formed by combinations 
of monomials in g and h. Let us consider j as an integer odd number (for even values 
of j the proof is similar). Then according to [ 161 we have 

and 

The operators defined as 

(24) 
provide a representation of the SU(2j + 1) classical algebra [ 171 with commutation 
relations 

J ,  = J,,,, = w m ~ m ~ / 2 g m ~ h m z  
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mod(2j+ 1 ) .  We combine (21) - (23)  and ( l ) ,  ( 2 )  to embed the matrix representation 
of the S U ( 2 ) ,  quantum generators into the SU(2 j+  1 )  classical algebra with deformed 
coefficients of expansion as follows: 

1 J  
(26 )  

(27) 

J + = -  1 f: J [ j - k ] [ j + k + l ] W - k ( m + J + l )  g m + l + l  h-’ 
2J+ 1 k = - ]  m=-] 

J [ j + k ] [ j - k + 1 ] w - ( k - 2 1 ( m + ~ + l )  m + J + l  J -  =- g h  2j-k 1 k = - J  m = - ~  

j 3 -  . 1 f: f: b ( m + J + I ) ( I - k )  m + J + l  
g 234- 1 k e - 1  m = - ~  

or in terms of the J ,  generators of the SU(2 j+  1 )  algebra, as: 

The above embedding in the classical limit q -* 1, [ X I  -* x, goes over to the classical 
embedding of the SU(2) algebra into SU(2 j+  1 ) .  We would like to emphasise that the 
common part between the SU(2) classical and quantum algebras appears to be, besides 
J 3 ,  the ‘exponential phase operator’ h (and its conjugate g )  which remain undeformed 
during quantisation. 

We make a further remark on quantum dynamics. A Hamiltonian function H ( g ,  h )  
of g, h which obey the quantum plane condition, (12)  acts as an endomorphism for 
the quantum plane in time. It is then tempting to say that the evolution operator of 
this Hamiltonian belongs to the GL(2),,=, group, and this group acts as a dynamic 
group. However this is not the case since the elements of such a matrix M which obey 
(14 )  should commute with g and h [14] ,  while here the Hamiltonian depends on g,  h 
and is not in general commuting with them. Representations of the G L ( 2 ) ,  matrix in 
terms of g ,  h have been given [ 181; their elements obey (14 )  by construction but acting 
on the g, h doublet fail to preserve the quantum plane condition. 

Finally, we briefly discuss the problem of the deformation of the Heisenberg 
equation of motion. To this end, we rewrite the deformed commutator (19 )  as 

(32) bbt - q2b tb  = 1 

where b 3 q N / 2 a  and b t  = a t q  As a first alternative one could replace the ordinary 
commutator in the Heisenberg equation by a q-commutator. But in this case the 
Hamiltonian does not q-commute with itself, so is not a constant of motion. Thus this 
alternative is easily rejected. 

In a more general case, one can replace the usual Heisenberg equation of motion, 
if= [ J ;  HI, by 

i Q f =  EA HI, (33)  
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in which the usual time-derivative is replaced by the deformed time-derivativet, 

with an arbitrary deformation parameter p, and the deformed commutator 

[ A  HI, 'fH - rHf 
with arbitrary deformation parameter r, has been used. 

(32), i.e. 

using (33) for f =  b and bt, is fulfilled only for the values p = r = 1, which brings us 
back to the original Heisenberg equation of motion. 

It is interesting to study the question of the deformation of the dynamics further. 

We are especially grateful to P Kulish for several useful discussions and clarifications. 
We thank J Lukierski for reading the manuscript and for helpful comments. 

One can check that the requirement of invariance of the q-commutation relation 

D,(bbt - q2btb)  = O  
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